

Department of CSE Page 1 of 17

UNIT-3
OVERVIEW:

• The SQL language has several aspects to it.

• DML (Data Manipulation Language)

• DDL (Data Definition Language)

• Triggers and Advanced Integrity Constraints

• Embedded and Dynamic SQL

• SQL code to be called from a host language such as C or COBOL or JAVA

• Dynamic SQL (Query to be constructed (and executed) as run-time

• Client-Server Execution and Remote Database Access:

• These commands control how a client application program can connect to an SQL db
server; or access db over a network.

• Transaction Management (explicitly control aspects of how a transaction is to be executed)

• Security: mechanisms to control users access to data objects such as tables & views

• Advanced Features: OO features, recursive queries, DS queries, DM, spatial data etc.

THE FORM A BASIC SQL QUERY

• The basic form of an SQL query is as follows:

• SELECT [DISTINCT] select-list

• FROM from-list

• WHERE qualification

• Every query must have a SELECT clause, which specifies columns to be retained in the result, and a FROM

clause, which specifies a cross-product of tables.

• The optional WHERE Clause specifies selection conditions on the tables mentioned in the FROM clause.

Department of CSE Page 2 of 17

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age FROM Sailors S

(Q11) Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age FROM Sailors AS S WHERE S.rating > 7

SELECT clause used to do projection Whereas selections in the relational algebra sense are expressed using the WHERE

clause

The from-list in the FROM clause is a list of table names.

Table name can be followed by a range variable; (useful when same table name appears more than once)

The select-list is a list of column names of tables named in the from-list.

The qualification in the WHERE clause is a Boolean combination (using connectives AND, OR and NOT) of Form

expression op expression, where op is comparison operators. Expression is column name or constants or an expression

Conceptual Evaluation Strategy:

1. Compute the cross-product of the tables in the from-list

2. Delete rows in the cross-product that fail the qualification conditions.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid AND R.bid = 103

(Q16) Find the sids of sailors who have reserved a red boat.

SELECT R.sid FROM Boats B, Reserves R WHERE B.bid = R.bid AND B.color = ‘red’

(Q2) Find the names of sailors who have reserved a red boat

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid and R.bid = B.bid AND S.sname =

‘Lubber’

(Q4) Find the names of sailors who have reserved at least one boat.

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid

Expressions and Strings in the SELECT Command

 SQL supports a more general version of the select-list than just a list of columns.

Each item in a select-list can be of the form expression AS column name, where expression is any arithmetic or string

expression over column names and constants, and column name is a new name for this column in the output of the query.

(Q17) Compute increments for the ratings of persons who have sailed two different boats on the same day

SELECT S.sname, S.rating+1 AS rating FROM Sailors S, Reserves R1, Reserves R2 WHERE S.sid = R1.sid AND S.sid

= R2.sid AND R1.day = R2.day AND R1.bid <> R2.bid

In addition, SQL provides support for pattern matching through the LIKE operator, along with the use of the wild-card

symbols %

Thus ‘AB%’ denotes a pattern matching every string that contains at least three characters, with the second and third

characters being A and B respectively.

Department of CSE Page 3 of 17

(Q18) Find the ages of sailors whose name begins and ends with B and has at least three characters

SELECT S.age FROM Sailors SWHERE S.sname LIKE ‘B_%B’

UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query form presented earlier.

UNION

INTERSECT

EXCEPT

IN (to check if an element is in a given set)

EXISTS(to check if a set is empty).

NOT

 (Q5) Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid and R.bid = B.bid AND (B.color = ‘red’

OR B.color = ‘green’)

Or Q5 can be rewritten as follows:

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

UNION

SELECT S2.sname FROM Sailors S2, Boats B2, Reserves R2 WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND

B2.color = ‘green’ AND B1.color = ‘red’ AND B2.color = ‘green’

(Q6) Find the names of sailors who have reserved both a red and a green boat

SELECT S.sname FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats B2 where S.sid = R1.sid AND R1.bid =

B1.bid AND S.sid = R2.sid AND R2.bid = B2.bid

OR Q6 can be rewritten as follows:

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

INTERSECT

SELECT S2.sname FROM Sailors S2, Boats B2, Reserves R2 WHERE S2.sid = R2.bid AND R2.bid = B2.bid AND

B2.color = ‘green’

(Q19) Find the sids of all sailors who have reserved red boats but not green boats.

SELECT S.sid FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

EXCEPT

SELECT S2.sid FROM Sailors S2, Reserves R2, Boats B2 WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color

= ‘green’

OR

SELECT R.sid FROM Boats B, Reserves R WHERE R.bid = B.bid AND B.color = ‘red’

EXCEPT

SELECT R2.sid FROM Boats B2, Reserves R2 WHERE R2.bid = B2.bid AND B2.color = ‘green’

Department of CSE Page 4 of 17

20. Find all sailors who have a rating of 10 or reserved boat 104.

SELECT S.sid FROM Sailors S WHERE S.rating = 10

UNION

SELECT R.sid FROM Reserves R WHERE R.bid = 104

NESTED QUERIES

A Nested Query is a query that has another query within it; the embedded query is called a subquery.

1. Find the names of sailors who have reserved boat 103.

SELECT S.sname FROM Sailors S WHERE S.sid IN (SELECT R.sid FROM Reserves R WHERE R.bid = 103)

2. Find the names of sailors who have reserved a red boat.

SELECT S.sname FROM Sailors S WHERE S.sid IN (SELECT R.sid FROM Reserves R

WHERE R.bid IN (SELECT B.bid FROM Boats B WHERE B.color = `red')

(Q21) Find the names of sailors who have not reserved a red boat.

SELECT S.sname FROM Sailors S WHERE S.sid NOT IN (SELECT R.sid

FROM Reserves R WHERE R.bid IN (SELECT B.bid FROM Boats B WHERE B.color = `red')

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname FROM Sailors S WHERE EXISTS (SELECT * FROM Reserves R

WHERE R.bid = 103 AND R.sid = S.sid)

(Q22) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid FROM Sailors S WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2 WHERE S2.sname = `Horatio')

(Q24) Find the sailors with the highest rating.

SELECT S.sid FROM Sailors S WHERE S.rating >= ALL (SELECT S2.rating FROM Sailors S2)

(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = R.bid AND B.color = ‘red’

 AND S.sid IN (SELECT S2.sid

 FROM Sailors S2, Boats B2, Reserves R2

 WHERE S2.sid = R2.sid AND R2.bid = B2.bid

 AND B2.color = ‘green’)

(Q9) Find the names of sailors who have reserved all boats.

SELECT S.sname FROM Sailors S

WHERE NOT EXISTS ((SELECT B.bid FROM Boats B)

EXCEPT

(SELECT R.bid FROM Reserves R WHERE R.sid = S.sid))

Department of CSE Page 5 of 17

AGGREGATE OPERATIONS

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

(Q25) Find the average age of all sailors.

SELECT AVG (S.age) FROM Sailors S.

(Q26) Find the average age of sailors with a rating of 10.

SELECT AVG (S.age) FROM Sailors S WHERE S.rating = 10

(Q27) Find the name and age of the oldest sailor.

SELECT S.sname, MAX (S.age) FROM Sailors S

(Q28) Count the number of sailors.

SELECT COUNT(*) FROM Sailors S

(Q29) Count the number of different sailor names.

SELECT COUNT (DISTINCT S.sname) FROM Sailors S

(Q30) Find the names of sailors who are older than the oldest sailor with a rating of 10.

SELECT S.sname FROM Sailors S

WHERE S.age > (SELECT MAX (S2.age) FROM Sailors S2 WHERE S2.rating = 10)

The GROUP BY and HAVING Clauses

(Q31) Find the names of the youngest sailor for each rating level.

If we know the that ratings are integers in the range 1 to 10, we could write 10 queries of the form:

SELECT MIN (S.age) FROM Sailors S WHERE S.rating = i;

Where I = 1,2….10. Writing 10 such queries is tedious. More important, we may not know what rating levels exists in

advance.

To write such queries, we need a major extension to the basic SQL query form, namely, the GROUP BY clause.

The extension also includes an option HAVING clause that can be used to specify qualifications over groups.

The general form of an SQL query with these extensions is:

SELECT [DISTINCT] select-list

FROM from-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

Department of CSE Page 6 of 17

Using the GROUP BY clause, we can write Q31 as follows:

SELECT S.rating, MIN (S.age) FROM Sailors S GROUP BY S.rating

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e., is at least 18 years old) for each rating level with at least two

such sailors

SELECT S.rating, MIN (S.age) AS minage FROM Sailors S WHERE S.age >= 18 GROUP BY S.rating

HAVING COUNT (*) > 1

(Q33) For each red boat, find the number of reservations for this boat

SELECT B.bid, COUNT (*) AS sailorcount FROM Boats B, Reserves R WHERE R.bid = B.bid AND B.color = `red'

GROUP BY B.bid

(Q34) Find the average age of sailors for each rating level that has at least two sailors

SELECT S.rating, AVG (S.age) AS avgage FROM Sailors S GROUP BY S.rating HAVING COUNT (*) > 1

(Q35) Find the average age of sailors who are of voting age (i.e., at least 18 years old)

for each rating level that has at least two sailors.

(Q36) Find the average age of sailors who are of voting a ge (i.e., at least 18 years old) for each rating level that has at least two such

sailors

SELECT S.rating, AVG (S.age) AS avgage FROM Sailors S WHERE S. age > 18 GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*) FROM Sailors S2 WHERE S.rating = S2.rating AND S2.age >= 18)

(Q37) Find those ratings for which the average age of sailors is the minimum overall Ratings

SELECT S.rating FROM Sailors S WHERE AVG (S.age) = (SELECT MIN (AVG (S2.age)) FROM Sailors S2

GROUP BY S2.rating)

COMPLEX INTEGRITY CONSTRAINTS IN SQL

Constraints over a Single Table

We can specify complex constraints over a single table using table constraints, which have the form CHECK conditional-expression.

For example, to ensure that rating must be an integer in the range 1 to 10, we could use:

CREATE TABLE Sailors (sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK (rating >= 1 AND rating <= 10))

To enforce the constraint that Interlake boats cannot be reserved, we could use:

CREATE TABLE Reserves (sid INTEGER,

bid INTEGER,

day DATE,

FOREIGN KEY (sid) REFERENCES Sailors

FOREIGN KEY (bid) REFERENCES Boats

CONSTRAINT noInterlakeRes

CHECK (`Interlake' <>

(SELECT B.bname

FROM Boats B

WHERE B.bid = Reserves.bid)))

Department of CSE Page 7 of 17

Domain Constraints and Distinct Types

A user can de_ne a new domain using the CREATE DOMAIN statement, which makes uses of CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 0 CHECK (VALUE >= 1 AND VALUE <= 10)

INTEGER is the base type for the domain ratingval, and every ratingval value must be of this type. Values in ratingval are further

restricted by using a CHECK constraint; in de_ning this constraint, we use the keyword VALUE to refer to a value

in the domain.

The optional DEFAULT keyword is used to associate a default value with a domain. If the domain ratingval is used for a column in

some relation, and no value is entered for this column in an inserted tuple, the default value 0 associated with ratingval is used.

Assertions: ICs over Several Tables.

Table constraints are associated with a single table, although the conditional expression in the CHECK clause can refer to other tables.

Table constraints are required to hold only if the associated table is nonempty. Thus, when a constraint involves two or more tables,

the table constraint mechanism is sometimes cumbersome and not quite what is desired. To cover such situations, SQL supports the

creation of assertions, which are constraints not associated with any one table.

As an example, suppose that we wish to enforce the constraint that the number of boats plus the number of sailors should be less than

100.

CREATE TABLE Sailors (sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK (rating >= 1 AND rating <= 10)

CHECK ((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B)

< 100))

TRIGGERS AND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in response to specified changes to the database, and is typically

specified by the DBA. A databasethat has a set of associated triggers is called an active database. A trigger description contains three

parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and its condition is true.

A trigger can be thought of as a `daemon' that monitors a database, and is executed when the database is modified in a way that

matches the event specification. An insert, delete or update statement could activate a trigger, regardless of which user or application

invoked the activating statement; users may not even be aware that a trigger was executed as a side effect of their program.

Examples of Triggers in SQL

Department of CSE Page 8 of 17

DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database, but they must be used with caution. The effect of a

collection of triggers can be very complex and maintaining an active database can become very difficult. Often, a judicious use of

integrity constraints can replace the use of triggers.

In an active database system, when the DBMS is about to execute a statement that modifies the database, it checks whether some

trigger is activated by the statement. If so, the DBMS processes the trigger by evaluating its condition part, and then (if the Condition

evaluates to true) executing its action part.

If a statement activates more than one trigger, the DBMS typically processes all of them, in some arbitrary order. An important point

is that the execution of the action part of a trigger could in turn activate another trigger. In particular, the execution of the action part

of a trigger could again activate the same trigger; such triggers are called

recursive triggers. The potential for such chain activations, and the unpredictable order in which a DBMS processes activated

triggers, can make it difficult to understand the effect of a collection of triggers.

Department of CSE Page 9 of 17

SCHEMA REFINEMENT AND NORMAL FORMS

INTRODUCTION TO SCHEMA REFINEMENT

Problems Caused by Redundancy

Storing the same information redundantly, that is, in more than one place within a database, can lead to several problems.

● Redundant Storage

● Update Anomalies

● Insertion Anomalies

● Deletion Anomalies

Decompositions

The essential idea is that many problems arising from redundancy can be addressed by replacing a relation with a

collection of ‘smaller’ relations.

A decomposition of a relation schema R consists of replacing the relation schema by two (or more) relation schemas

that each contain a subset of the attributes of R and together include all attributes in R. Institutively, we want to store the

information in any given instance of R by storing projections of the instance.

We can decompose Hourly_Emps into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)

Wages(rating, hourly wages)

Department of CSE Page 10 of 17

Problems Related to Decomposition

Two important questions must be asked repeatedly:

1. Do we need to decompose a relation?

2. What problems (if any) does a given decomposition cause?

To help with the first question, several normal forms have been proposed for relations. If a relation schema is in one of

these normal forms, we know that certain kinds of problems cannot arise.

W.r.t the second question, two properties of decompositions are of particular interest. The lossless-join property enables

us to recover any instance of the decomposed relation from corresponding instances of the smaller relations. The

dependency-preservation property enables us to enforce any constraint on the original relation by simply enforcing some

constraints on each of the smaller relations.

Functional Dependencies

A functional dependency (FD) is a kind of IC that generalizes the concept of a key.

Let R be a relation schema and let X and Y be nonempty sets of attributes in R. We say that an instance r of R satis_es the FD X ! Y 1 if

the following holds for every pair of tuples t1 and t2 in r:

If t1:X = t2:X, then t1:Y = t2:Y .

We use the notation t1:X to refer to the projection of tuple t1 onto the attributes in X, in a natural extension of our TRC notation (see

Chapter 4) t:a for referring to attribute a of tuple t. An FD X->Y essentially says that if two tuples agree on the values in attributes X,

they must also agree on the values in attributes Y.

Figure 15.3 illustrates the meaning of the FD AB -> C by showing an instance that satisfies this dependency. The first two tuples show

that an FD is not the same as a key constraint: Although the FD is not violated, AB is clearly not a key for the

relation. The third and fourth tuples illustrate that if two tuples differ in either the A field or the B field, they can differ in the C field

without violating the FD. On the other hand, if we add a tuple ha1; b1; c2; d1i to the instance shown in this figure, the resulting

instance would violate the FD; to see this violation, compare the first tuple

in the figure with the new tuple

What is Relation?

A relation is a named two–dimensional table of data. Each relation consists of a set of named columns and an arbitrary

number of unnamed rows.

For example, a relation named Employee contains following attributes, emp-id, ename, dept name and salary.

marketing 42000

What are the Properties of relations?

The properties of relations are defined on two dimensional tables. They are:

θ Each relation (or table) in a database has a unique name.

θ An entry at the intersection of each row and column is atomic or single. These can be no multiplied atttributes in a

relation.

θ Each row is unique, no two rows in a relation are identical.

θ Each attribute or column within a table has a unique name.

Department of CSE Page 11 of 17

θ The sequence of columns (left to right) is insignificant the column of a relation can be interchanged without changing

the meaning use of the relation.

θ The sequence of rows (top to bottom) is insignificant. As with column, the rows of relation may be interchanged or

stored in any sequence.

A functional dependency is a constraint between two attributes (or) two sets of attributes.

For example, the table EMPLOYEE has 4 columns that are Functionally dependencies on EMP_ID.

Partial functional dependency: It is a functional dependency in which one or more nonkey attributes are functionally

dependent on part of the primary key. Consider the following graphical representation, in that some of the attributes are

partially depend on primary key

In this example, Ename, Dept_name, and salary are fully functionally depend on Primary key of Emp_id. But Course_title

and date_completed are partial functional dependency. In this case, the partial functional dependency creates redundancy

in that relation

What is Normal Form? What are steps in Normal Form?

NORMALIZATION: Normalization is the process of decomposing relations to produce smaller, well-structured relation.

To produce smaller and well structured relations, the user needs to follow six normal forms

Steps in Normalization:

A normal form is state of relation that result from applying simple rules from regarding functional dependencies

relationships between attributes to that relation. The normal form are

1. First normal form

2. Second normal form

3. Third normal form

4. Boyce/codd normal form

5. Fourth normal form

6. Fifth normal form

1) First Normal Form: Any multi-valued attributes (also called repeating groups) have been removed,

2) Second Normal Form: Any partial functional dependencies have been removed.

3) Third Normal Form: Any transitive dependencies have been removed.

4) Boyce/Codd Normal Form: Any remaining anomalies that result from functional dependencies have been removed.

5) Fourth Normal Form: Any multi-valued dependencies have been removed.

6) Fifth Normal Form: Any remaining anomalies have been removed.

Advantages of Normalized Relations Over the Un-normalized Relations:

The advantages of normalized relations over un-normalized relations are

1) Normalized relation (table) does not contain repeating groups whereas, unnormalized relation (table) contains one or

more repeating groups.

2) Normalized relation consists of a primary key. There is no primary key presents in un-normalized relation.

Department of CSE Page 12 of 17

3) Normalization removes the repeating group which occurs many times in a table.

4) With the help of normalization process, we can transform un-normalized table to First Normal Form (1NF) by

removing repeating groups from un-normalized tables.

5) Normalized r0000000

elations (tables) gives the more simplified result whereas unnormalized relation gives more complicated results.

6) Normalized relations improve storage efficiency, data integrity and scalability. But un-normalized relations cannot

improvise the storage efficiency and data integrity.

7) Normalization results in database consistency, flexible data accesses.

FIRST NORMAL FORM (1NF):

A relation is in first normal form (1NF) contains no multi-Valued attributes. Consider the example employee, that contain

multi valued attributes that are removing and converting into single valued attributes

Multi valued attributes in course title

Removing the multi valued attributes and converting single valued using First NF

SECOND NORMAL FORM (2NF):

A relation in Second Normal Form (2NF) if it is in the 1NF and if all non-key attributes are fully functionally dependent

on the primary key. In a functional dependency X -> Y, the attribute on left hand side (i.e. x) is the primary key of the

relation and right side attributes on right hand side i.e. Y is the non-key attributes. In some situation some non-key

attributes are partial functional dependency on primary key. Consider the following example for partial functional

specification and also that convert into 2 NF to decompose that into two relations.

Department of CSE Page 13 of 17

To avoid this, convert this into Second Normal Form. The 2NF will decompose the relation into two relations, shown in

graphical representation

In the above graphical representation

¬ the EMPLOYEE relation satisfies rule of 1 NF in Second Normal form and

¬ the COURSE relation satisfies rule of 2 NF by decomposing into two relation

THIRD NORMAL FORM(3NF): A relation that is in Second Normal form and has no transitive dependencies present.

Transitive dependency: A transitive is a functional dependency between two non-key attributes. For example, consider

the relation Sales with attributes cust_id, name, sales person and region that shown in graphical representation.

CUST_ID NAME SALESPERSON REGION

1001 Anand Smith South

1002 Sunil kiran West

1003 Govind babu rao East

1004 Manohar Smith South

1005 Madhu Somu North

In this example, to insert, delete and update any row that facing Anomaly

a) Insertion Anomaly: A new salesperson is assigned to North Region without assign a customer to that salesperson. This

causes insertion Anomaly.

b) Deletion Anomaly: If a customer number say 1003 is deleted from the table, we lose the information of salesperson

who is assigned to that customer. This causes, Deletion Anomaly.

c) Modification Anomaly: If salesperson Smith is reassigned to the East region, several rows must be changed to reflect

that fact. This causes, update anomaly.

Department of CSE Page 14 of 17

To avoid this Anomaly problem, the transitive dependency can be removed by decomposition of SALES into two

relations in 3NF.

Consider the following example, that removes Anomaly by decomposing into two relations

CUST_ID NAME SALESPERSON

1001 Anand Smith

1002 Sunil Kiran

1003 Govind Babu rao

1004 Manohar Smith

1005 Madhu Somu

SalesPerson Region

Smith South

Kiran West

Babu Rao East

Smith South

Somu North

BOYCE/CODD NORMAL FORM(BCNF): A relation is in BCNF if it is in 3NF and every determinant is a candidate

key.

FD in F+ of the form X -> A where X с S and A є S, X is a super key of R.

Boyce-Codd normal form removes the remaining anomalies in 3NF that are resulting from functional dependency, we can

get the result of relation in BCNF.

For example, STUDENT-ADVIDSOR IN 3NF

Department of CSE Page 15 of 17

In the above relation the primary key in student-id and major-subject. Here the part of the primary key major-subject is

dependent upon a non-key attribute faculty–advisor. So, here the determinant the faculty-advisor. But it is not candidate

key.

Here in this example there are no partial dependencies and transitive dependencies. There is only functional

dependency between part of the primary key and non key attribute. Because of this dependency there is anomaly in this

relation. Suppose that in maths subject the advisor’ B’ is replaced by X. this change must be made in two or more rows in

this relation. This is an updation anomaly.

To convert a relation to BCNF the first step in the original relation is modified that the determinant (non key attributes)

becomes a component of the primary key of new relation. The attribute that is dependent on determinant becomes a non-

key attributes.

The second step in the conversion process is decompose the relation to eliminate the partial functional dependency.

This results in two relations. These relations are in 3NF and BCNF. since there is only one candidate key. That is

determinant.

Two relations are in BCNF.

Department of CSE Page 16 of 17

In these two relations the student relation has a composite key, which contains attributes student-id and faculty-advisor.

Here faculty–advisor a foreign key which is referenced to the primary key of the advisor relation.

Two relations are in BCNF with simple data

Fourth Normal Form (4 NF):

A relation is in BCNF that contain no multivalued dependency. In this case, 1 NF will repeated in this step. For example,

R be a relation schema, X and Y be attributes of R, and F be a set of dependencies that includes both FDs and MVDs. (i.e.

Functional Dependency and Multi-valued Dependencies). Then R is said to be in Fourth Normal Form (4NF) if for every

MVD X ->-> Y that holds over R, one of the following statements is true.

1) Y с X or XY = R, or 2) X is a super key

Example: Consider a relation schema ABCD and suppose that are FD A -> BCD and the MVD B -> -> C are given as

shown in Table

It shows three tuples from relation ABCD that satisfies the given MVD B -> -> C. From the definition of a MVD given

tuples t1 and t2, it follows that tuples t3 must also be included in the above relation. Now, consider tuples t2 and t3. From

the given FD A -> BCD and the fact that these tuples have the same A-value, we can compute

the c1 = c2. Therefore, we see that the FD B -> C must hold over ABCD whenever the FD A-> BCD and the MVD

B-> -> C holds. If B -> C holds, the relation is not in BCNF but the relation is in 4 NF.

The fourth normal from is useful because it overcomes the problems of the various approaches in which it represents the

multi-valued attributes in a single relatio00n.

Fifth Normal Form (5 NF): Any remaining anomalies from 4 NF relation have been removed.

Department of CSE Page 17 of 17

A relation schema R is said to be in Fifth Normal Form (5NF) if, for every join dependency

* (R1, Rn) that holds over R, one of the following statements is true.

*Ri = R for some I, or

* The JD is implied by the set of those FDs over R in which the left side is a key for R. It deals with a property loss less

joins

LOSSELESS-JOIN DECOMPOSITION:

Let R be a relation schema and let F be a set FDs (Functional Dependencies) over R. A decomposition of R into two

schemas with attribute X and Y is said to be lossless-join decomposition with respect to F, if for every instance r of R that

satisfies the dependencies in Fr.

In simple words, we can recover the original relation from the decomposed relations

In general, if we take projection of a relation and recombine them using natural join, we obtain some additional tuples that

were not in the original relation

 The decomposition of relation schema r i.e. SPD into SP i.e. PROJECTING πsp (r) and PD i.e., projecting πPD

(r) is therefore lossless decomposition as it gains back all original tuples of relation ‘r’ as well as with some additional

tuples that were not in original relation ‘r’

